Algebra Qualifying Exam I (January 2023)

You have 120 minutes to complete this exam.

- 1. (10 points) Let G be a group of order 81. Is G necessarily abelian? Please justify your conclusion.
- 2. (10 points) Let S_n be the symmetric group with $n \ge 5$. Find all the normal subgroups of S_n . Please justify your conclusion.
- 3. (10 points) Determine the greatest common divisor of the polynomials $f(x) = x^{100} 1$ and $g(x) = x^{17} + 2x^6 + x + 100$ in the polynomial ring $\mathbb{Q}[x]$.
- 4. (10 points) Consider the ring

$$\mathbb{Z}[\sqrt{-2}] = \left\{ a + b\sqrt{-2} \mid a, b \in \mathbb{Z} \right\}.$$

Define $N(a + b\sqrt{-2}) = a^2 + 2b^2$. Prove that $\mathbb{Z}[\sqrt{-2}]$ with the function N forms a Euclidean domain.

- 5. (15 points) Let \mathbf{F}_7 be the finite field of 7 elements.
 - (a) Prove that the polynomial $f(x) = x^7 x + 1$ is irreducible in $\mathbf{F}_7[x]$.
 - (b) Prove that the polynomial $g(x) = x^7 + 7x^5 + 6x + 8$ is irreducible in $\mathbb{Z}[x]$.
- 6. (10 points) Let $\alpha = \cos \frac{4\pi}{11}$. Let $E = \mathbb{Q}(\alpha)$. Compute the Galois group $\operatorname{Gal}(E/\mathbb{Q})$.