## Algebra Qualifying Exam I (January 2023)

You have 120 minutes to complete this exam.

1. (10 points) Let $G$ be a group of order 81 . Is $G$ necessarily abelian? Please justify your conclusion.
2. (10 points) Let $S_{n}$ be the symmetric group with $n \geq 5$. Find all the normal subgroups of $S_{n}$. Please justify your conclusion.
3. (10 points) Determine the greatest common divisor of the polynomials $f(x)=x^{100}-1$ and $g(x)=x^{17}+2 x^{6}+x+100$ in the polynomial ring $\mathbb{Q}[x]$.
4. (10 points) Consider the ring

$$
\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2} \mid a, b \in \mathbb{Z}\}
$$

Define $N(a+b \sqrt{-2})=a^{2}+2 b^{2}$. Prove that $\mathbb{Z}[\sqrt{-2}]$ with the function $N$ forms a Euclidean domain.
5. (15 points) Let $\mathbf{F}_{7}$ be the finite field of 7 elements.
(a) Prove that the polynomial $f(x)=x^{7}-x+1$ is irreducible in $\mathbf{F}_{7}[x]$.
(b) Prove that the polynomial $g(x)=x^{7}+7 x^{5}+6 x+8$ is irreducible in $\mathbb{Z}[x]$.
6. (10 points) Let $\alpha=\cos \frac{4 \pi}{11}$. Let $E=\mathbb{Q}(\alpha)$. Compute the Galois group $\operatorname{Gal}(E / \mathbb{Q})$.

